11 research outputs found

    Effect of Source, Surfactant, and Deposition Process on Electronic Properties of Nanotube Arrays

    Get PDF
    The electronic properties of arrays of carbon nanotubes from several different sources differing in the manufacturing process used with a variety of average properties such as length, diameter, and chirality are studied. We used several common surfactants to disperse each of these nanotubes and then deposited them on Si wafers from their aqueous solutions using dielectrophoresis. Transport measurements were performed to compare and determine the effect of different surfactants, deposition processes, and synthesis processes on nanotubes synthesized using CVD, CoMoCAT, laser ablation, and HiPCO

    Towards a single-chip, implantable RFID system: is a single-cell radio possible?

    Get PDF
    We present an overview of progress towards single-chip RFID solutions. To date heterogeneous integration has been appropriate for non-biological systems. However, for in-vivo sensors and even drug delivery systems, a small form factor is required. We discuss fundamental limits on the size of the form factor, the effect of the antenna, and propose a unified single-chip RFID solution appropriate for a broad range of biomedical in-vivo device applications, both current and future. Fundamental issues regarding the possibility of single cell RF radios to interface with biological function are discussed

    Parylene neuro-cages for live neural networks study

    Get PDF
    Here we present a surface-micromachined Parylene neuro-cage array for the in vitro study of live neural networks. Various types of neuro-cages have been fabricated and several adhesion promotion techniques have been explored. The biocompatibility and mechanical robustness of Parylene neuro-cages have been demonstrated through cell culture experiments. Dissociated neuronal cell bodies have been inserted one to a cage and cultured, allowing neurites to grow out through Parylene channels and form live neural networks. In addition, there is no observable difference between neural growth on Parylene and on oxide surfaces. It is possible to use the same or slightly modified cage structures to accommodate different cells, leading to possible applications of this technology in cell study and drug discovery
    corecore